Emergent Artificial Intelligence


What happens when a computer can learn on the job?

Artificial intelligence (AI) is, in simple terms, the science of doing by computer the things that people can do. Over recent years, AI has advanced significantly: most of us now use smartphones that can recognize human speech, or have travelled through an airport immigration queue using image-recognition technology. Self-driving cars and automated flying drones are now in the testing stage before anticipated widespread use, while for certain learning and memory tasks, machines now outperform humans. Watson, an artificially intelligent computer system, beat the best human candidates at the quiz game Jeopardy.

Artificial intelligence, in contrast to normal hardware and software, enables a machine to perceive and respond to its changing environment. Emergent AI takes this a step further, with progress arising from machines that learn automatically by assimilating large volumes of information. An example is NELL, the Never-Ending Language Learning project from Carnegie Mellon University, a computer system that not only reads facts by crawling through hundreds of millions of web pages, but attempts to improve its reading and understanding competence in the process in order to perform better in the future.

Like next-generation robotics, improved AI will lead to significant productivity advances as machines take over – and even perform better – at certain tasks than humans. There is substantial evidence that self-driving cars will reduce collisions, and resulting deaths and injuries, from road transport, as machines avoid human errors, lapses in concentration and defects in sight, among other problems. Intelligent machines, having faster access to a much larger store of information, and able to respond without human emotional biases, might also perform better than medical professionals in diagnosing diseases. The Watson system is now being deployed in oncology to assist in diagnosis and personalized, evidence-based treatment options for cancer patients.

Long the stuff of dystopian sci-fi nightmares, AI clearly comes with risks – the most obvious being that super-intelligent machines might one day overcome and enslave humans. This risk, while still decades away, is taken increasingly seriously by experts, many of whom signed an open letter coordinated by the Future of Life Institute in January 2015 to direct the future of AI away from potential pitfalls. More prosaically, economic changes prompted by intelligent computers replacing human workers may exacerbate social inequalities and threaten existing jobs. For example, automated drones may replace most human delivery drivers, and self-driven short-hire vehicles could make taxis increasingly redundant.

On the other hand, emergent AI may make attributes that are still exclusively human – creativity, emotions, interpersonal relationships – more clearly valued. As machines grow in human intelligence, this technology will increasingly challenge our view of what it means to be human, as well as the risks and benefits posed by the rapidly closing gap between man and machine.





Fuel cell vehicles


Zero-emission cars that run on hydrogen

Fuel cell” vehicles have been long promised, as they potentially offer several major advantages over electric and hydrocarbon-powered vehicles. However, the technology has only now begun to reach the stage where automotive companies are planning to launch them for consumers. Initial prices are likely to be in the range of $70,000, but should come down significantly as volumes increase within the next couple of years.

Unlike batteries, which must be charged from an external source, fuel cells generate electricity directly, using fuels such as hydrogen or natural gas. In practice, fuel cells and batteries are combined, with the fuel cell generating electricity and the batteries storing this energy until demanded by the motors that drive the vehicle. Fuel cell vehicles are therefore hybrids, and will likely also deploy regenerative braking – a key capability for maximizing efficiency and range.

Unlike battery-powered electric vehicles, fuel cell vehicles behave as any conventionally fuelled vehicle. With a long cruising range – up to 650 km per tank (the fuel is usually compressed hydrogen gas) – a hydrogen fuel refill only takes about three minutes. Hydrogen is clean-burning, producing only water vapour as waste, so fuel cell vehicles burning hydrogen will be zero-emission, an important factor given the need to reduce air pollution.

There are a number of ways to produce hydrogen without generating carbon emissions. Most obviously, renewable sources of electricity from wind and solar sources can be used to electrolyse water – though the overall energy efficiency of this process is likely to be quite low. Hydrogen can also be split from water in high-temperature nuclear reactors or generated from fossil fuels such as coal or natural gas, with the resulting CO2 captured and sequestered rather than released into the atmosphere.

As well as the production of cheap hydrogen on a large scale, a significant challenge is the lack of a hydrogen distribution infrastructure that would be needed to parallel and eventually replace petrol and diesel filling stations. Long distance transport of hydrogen, even in a compressed state, is not considered economically feasible today. However, innovative hydrogen storage techniques, such as organic liquid carriers that do not require high-pressure storage, will soon lower the cost of long-distance transport and ease the risks associated with gas storage and inadvertent release.

Mass-market fuel cell vehicles are an attractive prospect, because they will offer the range and fuelling convenience of today’s diesel and petrol-powered vehicles while providing the benefits of sustainability in personal transportation. Achieving these benefits will, however, require the reliable and economical production of hydrogen from entirely low-carbon sources, and its distribution to a growing fleet of vehicles (expected to number in the many millions within a decade).